
1. Introduction
Tsunamis are a devastating natural, high-fatality hazard (Bryant, 2008). Because most tsunamis are generated 
by earthquakes, the first indication of a potentially life-threatening tsunami is the earthquake itself. Effective 
tsunami warning systems must therefore detect, locate, and estimate the magnitude of the causative earthquake 
to infer tsunamigenic potential, and warn coastal populations as soon as possible after initiation of fault rupture. 
Rapid characterization of the earthquake focal mechanism also aids in inferring tsunamigenic potential (Melgar 
& Bock, 2015; Melgar et al., 2016). Most tsunamis originate from Earth's subduction zones due to thrust fault-
ing although earthquakes with other source mechanisms have also generated tsunamis (Elbanna et  al.,  2021; 
Scott, 2021). For example, the 2012 𝐴𝐴 𝐴𝐴𝑤𝑤 8.6 predominantly strike-slip intraplate event off Sumatra, Indonesia 
(Satriano et al., 2012), generated a tsunami that was recorded at sea-level stations as far as 4,800 km from the 
epicenter and by ocean bottom pressure sensors (i.e., DART buoys) in the Indian Ocean (Wang et al., 2012). 
Similarly, the 2009 𝐴𝐴 𝐴𝐴𝑤𝑤 8.1 Samoa earthquake was a normal faulting, outer-rise type event that produced a sizable 
tsunami with 189 fatalities (Okal et al., 2010).

Current warning systems are well-developed for basin-wide and regional tsunamis. For earthquakes over 𝐴𝐴 𝐴𝐴𝑤𝑤 8.0, 
they rely mainly on long period (>∼300 s) seismic data recorded by broadband seismometers at distances greater 
than ∼500  km from the epicenter. However, for large tsunamigenic events, ground motions can exceed the 
dynamic range of a seismometer and result in a clipped record if measured too close to the seismic rupture. There-
fore, tsunami warnings to the coastal communities located closest to the earthquake rupture may not be issued 
in a sufficiently timely manner. Another serious challenge for tsunami warning is the identification of tsunami 

Abstract We estimate a seismogeodetic earthquake moment magnitude using unclipped, broadband 
velocity and displacement waveforms from collocated Global Navigation Satellite Systems and seismic stations 
located within 800 km epicentral distance for nine 7.2 < 𝐴𝐴 𝐴𝐴𝑤𝑤  < 9.1 earthquakes. We consider the vertical 
component of seismogeodetic displacement as an approximate source time function and integrate the associated 
time series to obtain the seismic moment. By continuing to integrate vertical displacement beyond the initial 
P-waves, we obtain rapid estimates of 𝐴𝐴 𝐴𝐴𝑤𝑤 that are within 0.2 magnitude units for 8 thrust faulting events and 
within 0.3 units for the single normal faulting event. Because our estimates of the seismic moment are based 
on the maximum value of integrated displacement, no regression against other source parameters, or distance, 
is necessary. Our new method shows promise for integration into earthquake and local tsunami early warning 
systems, including tsunami earthquakes characterized by relatively slow moment release over a longer rupture 
time, and earthquakes with complex source time functions.

Plain Language Summary Tsunami Warning Centers are responsible for alerting coastal 
populations of expected tsunami waves caused by significant earthquakes. Traditionally, warnings rely on rapid 
magnitude estimation based on distant seismic data. This is sufficient for ocean-wide tsunami warnings but 
often not for coastal populations closest to a causative earthquake. More timely warnings for local tsunamis 
can be obtained by supplementing measurements of seismic accelerations with displacements from Global 
Navigation Satellite Systems instruments located close to the earthquake source. In this study, we use this data 
combination to estimate the magnitude of nine historical earthquakes around the Pacific basin. Our real-time 
simulations show that we can obtain useful and reliable magnitude estimates for large earthquakes and issue 
local tsunami warnings within minutes after rupture initiation.
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earthquakes that release very little high-frequency energy that can be felt by humans (Kanamori, 1972; Polet & 
Kanamori, 2000; Tanioka et al., 1997). In this case, the predicted amplitudes of the tsunami waves generated may 
be underestimated.

A prototypical example of the over-reliance on seismic data is the 2011 𝐴𝐴 𝐴𝐴𝑤𝑤 9.1 Tohoku-Oki, Japan earthquake 
and tsunami that devastated the northeast coast of Honshu. The Japan Meteorological Agency (JMA) determined 
a magnitude 𝐴𝐴 𝐴𝐴𝑤𝑤 7.9 and issued a tsunami warning within 3 min of rupture initiation. This underestimate may 
have resulted in a delay of coastal evacuation (Hoshiba & Ozaki, 2014). Improved seismic methods have been 
developed to increase timeliness and accuracy, in particular the inversion of the W-phase (Kanamori, 1993) to 
obtain the W-phase Centroid Moment Tensor (WCMT) (Kanamori & Rivera, 2008) and corresponding moment 
magnitude, 𝐴𝐴 𝐴𝐴𝑤𝑤 . The WCMT and 𝐴𝐴 𝐴𝐴𝑤𝑤 can be available within 5–20 min of earthquake origin time, thus making 
it more suitable for local tsunami warning (Rivera & Kanamori, 2009). Another issue with insufficiently broad-
band seismic data is magnitude saturation for earthquakes greater than ∼𝐴𝐴 𝐴𝐴𝑤𝑤 8.0, which can result in significant 
magnitude underestimates (Kanamori, 1977), as occurred in the JMA response to the 2011 𝐴𝐴 𝐴𝐴𝑤𝑤 9.1 Tohoku-Oki 
event (Hoshiba & Ozaki, 2014).

Seismic networks also include strong-motion accelerometers that do not clip. However, for earthquake source 
parameter determination methods requiring surface displacement information, acceleration waveforms must 
be doubly integrated, often causing drifts in displacement as a result of baseline errors (Boore, 2001; Boore 
et  al.,  2002; Graizer,  1979; Iwan et  al.,  1985; Melgar, Bock, et  al.,  2013; Smyth & Wu,  2007). To improve 
local tsunami warnings, other real-time sensors may be deployed. For example, ocean-bottom pressure sensors, 
near-shore Global Navigation Satellite Systems (GNSS)-mounted buoys, autonomous wave gliders, and seafloor 
GNSS-acoustic instruments (Hoshiba & Ozaki, 2014; Kido et al., 2011; Sato et al., 2013; Yokota et al., 2018). 
Furthermore, real-time GNSS networks can measure precise (∼1 cm single epoch) high-rate (1–10 Hz) displace-
ments including dynamic and static (permanent) coseismic offsets, while not experiencing clipping or magnitude 
saturation (e.g., Bock et al., 2000, 2004; Genrich & Bock, 2006; Larson et al., 2003; Wright et al., 2012).

Empirical scaling relationships using peak-ground-displacements (PGDs) measured from high-rate GNSS 
displacements (Crowell et al., 2013; Melgar et al., 2015; Ruhl et al., 2019) have been successfully used to rapidly 
estimate magnitude in earthquake early warning contexts (Hodgkinson et al., 2020; Mattioli et al., 2020; Melbourne 
et al., 2021). Retrospective studies of several tsunamigenic events in Japan and Chile have also demonstrated the 
utility of scaling relationships as an element of tsunami warning systems and to derive models of coastal inunda-
tion (Blewitt et al., 2006; Melgar et al., 2016; Ohta et al., 2012). Several earthquake early warning systems have 
already incorporated GNSS displacement data into their magnitude determination algorithms. These include 
GlarmS (Grapenthin et al., 2014) and BEFORES (Minson et al., 2014) in the Western U.S., G-FAST in the West-
ern U.S. and Chile (Barrientos, 2018; Crowell et al., 2018), and REGARD in Japan (Kawamoto et al., 2016). In 
addition to rapid magnitude estimation, studies have demonstrated that GNSS displacements can provide rapid 
centroid moment tensor solutions (Käufl et al., 2014; Melgar et al., 2012; O’Toole et al., 2013) and finite fault 
slip models (e.g., Langbein et al., 2005; Melgar, Crowell, et al., 2013; Miyazaki et al., 2004).

GNSS displacements, however, are not as precise as integrated seismic velocities or double-integrated acceler-
ations and cannot detect P-waves. Thus, GNSS networks require a seismic trigger for detection and hypocenter 
location. Combining GNSS and collocated strong-motion data (Bock et al., 2011; Emore et al., 2007; Nikolaidis 
et al., 2001; Smyth & Wu, 2007) yields unclipped broadband velocity and displacement waveforms that are sensi-
tive to the entire spectrum of ground motions from the Nyquist frequency of the accelerometer data (typically 
50–100 Hz) to the static coseismic offset, while minimizing baseline errors.

Here we use seismogeodetic networks consisting of collocated GNSS receivers and strong-motion accelerometers 
to improve local tsunami warnings through rapid estimation of earthquake magnitude. The separation distance 
between GNSS and strong motion instruments can be as much as 15 km as long as the time offset between sensors 
in considered (Emore et al., 2007). However, we set a maximum separation distance of 5 km (Bock et al., 2011; 
Saunders et al., 2016), and more than 90% of the sensors in this study are within 4 km. Ideally, to optimize the 
combination of the two data types, the instruments should be collocated (also for logistical simplicity). For exam-
ple, an inexpensive Micro-Electro Mechanical System accelerometer directly attached to the GNSS monument 
has been deployed at multiple stations in California; the system has been successfully demonstrated in the near 
field of several 𝐴𝐴 𝐴𝐴𝑤𝑤 4+ earthquakes (Goldberg & Bock, 2017; Saunders et al., 2016).

Supervision: Yehuda Bock, Stuart 
Weinstein
Validation: Dorian Golriz
Visualization: Dorian Golriz, Jonathan 
R. Weiss
Writing – original draft: Dorian Golriz, 
Barry Hirshorn, Yehuda Bock, Stuart 
Weinstein, Jonathan R. Weiss
Writing – review & editing: Yehuda 
Bock, Stuart Weinstein



Journal of Geophysical Research: Solid Earth

GOLRIZ ET AL.

10.1029/2022JB025555

3 of 14

We designed a Kalman filter to optimally combine the GNSS displacements and strong motion accelerations 
(Bock et  al.,  2011; Smyth & Wu,  2007) to estimate seismogeodetic velocities and displacements. The seis-
mogeodetic velocities are used to detect P-wave onset times and estimate the coseismic time window (Golriz 
et al., 2021) over a network of near- to far-field collocated GNSS and accelerometer stations. Using the vertical 
component of seismogeodetic displacement as an approximate source time function (Kikuchi & Ishida, 1993; 
Tsuboi et al., 1995), we rapidly estimate the seismic moment and 𝐴𝐴 𝐴𝐴𝑤𝑤 . Our method is based on theory (Aki & 
Richards, 2002), unlike empirical magnitude scaling relationships such as PGD. Using the seismogeodetic data 
from nine earthquakes in the 7.2 < 𝐴𝐴 𝐴𝐴𝑤𝑤  < 9.1 range, we estimate the seismogeodetic moment magnitude, 𝐴𝐴 𝐴𝐴wg , 
within 2–3 min of earthquake origin time with an accuracy of 0.18 magnitude units for eight thrust faulting events 
and 0.32 magnitude units for a single normal faulting event.

1.1. Operational Tsunami Warning at the Pacific Tsunami Warning Center

This study is motivated by our goal of developing an operational seismogeodetic-based warning system for local 
tsunamis (Figure S1 in Supporting Information S1). Although applicable to any tsunami warning center, we use 
our work with the National Oceanic and Atmospheric Administration/National Weather Service/Pacific Tsunami 
Warning Center (PTWC), to illustrate our methodology. Rapid magnitude estimation based on seismic data is one 
component of the current tsunami warning system at PTWC, which performs real-time data reception, earthquake 
detection, location, and W-phase inversion.

It is instructive to describe the current PTWC system at as an example of a real-world operation that can then 
be useful to other tsunami warning efforts, as well as for earthquake early warning. The PTWC system oper-
ates partially within an Earthworm environment (https://www.isti.com/ and http://www.earthwormcentral.org/). 
Automated earthquake picking, association, magnitude estimation, and paging (R. Allen, 1982; R. V. Allen, 1978; 
Evans & Allen, 1983; Johnson et  al., 1995, 1997; Withers et  al., 1998) notifies duty scientists of a potential 
tsunami within 2–5 min of the beginning of any earthquake greater than ∼𝐴𝐴 𝐴𝐴𝑤𝑤 5.5, worldwide. In the Hawaiian 
Islands, Puerto Rico, and the Virgin Islands, the PTWC duty scientists are paged for earthquakes greater than 
∼𝐴𝐴 𝐴𝐴𝑤𝑤 3.5 within 10–20 s of earthquake origin time (Hirshorn, 2007; Hirshorn et al., 2019).

PTWC duty scientists assess the tsunamigenic potential of an earthquake using a variety of magnitude estimation 
techniques, based on different periods contained in the earthquake source spectrum (Hirshorn & Weinstein, 2009; 
Hirshorn et al., 2019), recorded in regional to teleseismic broadband data. The most accurate estimate of 𝐴𝐴 𝐴𝐴𝑤𝑤 
comes from the inversion of the W-phase (Kanamori, 1993) to obtain the WCMT (Kanamori & Rivera, 2008) 
within ∼25 min of earthquake origin time. Rivera and Kanamori (2009) showed that the W-phase is useful for 
regional tsunami warnings by improving the timeliness from approximately 25 to 5 min after earthquake origin 
time. Regional implementations are operating in Japan, Mexico, Australia, Taiwan, China, and Chile. In Chile, the 
W-Phase method has been running automatically in real-time for the Centro Sismológico Nacional (CSN) since 
2011 for regional distances, providing a WCMT and 𝐴𝐴 𝐴𝐴𝑤𝑤 within 5–6 min of earthquake origin time (Riquelme 
et al., 2016, 2018). Although not yet implemented in real-time operations, PTWC is testing a regional WCMT 
modification, which will report 𝐴𝐴 𝐴𝐴𝑤𝑤 and the moment tensor within ∼15 min. See Hirshorn and Weinstein (2009) 
and Hirshorn et al. (2019) for a review of PTWC source characterization methods.

The broadband P-wave moment magnitude, 𝐴𝐴 𝐴𝐴wp (Tsuboi et al., 1995, 1999; Whitmore et al., 2002) provides 
PTWC with initial estimate of 𝐴𝐴 𝐴𝐴𝑤𝑤 . The 𝐴𝐴 𝐴𝐴wp method relies on the first P-waves, typically providing accurate 
estimates of 𝐴𝐴 𝐴𝐴𝑤𝑤 within about 2–5 min of rupture initiation. However, 𝐴𝐴 𝐴𝐴wp estimates of 𝐴𝐴 𝐴𝐴𝑤𝑤 have three important 
caveats. First, for very large (𝐴𝐴 𝐴𝐴𝑤𝑤  > 8.0) earthquakes, 𝐴𝐴 𝐴𝐴wp may saturate when based on data from seismic sensors 
with insufficient long period (e.g., <350 s) sensitivity. Second, for complex earthquakes with several source time 
function peaks that are well separated in time, 𝐴𝐴 𝐴𝐴wp may underestimate 𝐴𝐴 𝐴𝐴𝑤𝑤 . Third, and perhaps the most chal-
lenging for a tsunami warning system, is the identification of “tsunami” or “slow” earthquakes (Kanamori, 1972). 

𝐴𝐴 𝐴𝐴wp may underestimate the magnitude of these events because of their relatively slow moment release over a 
longer rupture time. 𝐴𝐴 𝐴𝐴wg can potentially address these caveats, enabling PTWC to issue local tsunami warnings 
with accurate magnitude estimates and within 2–3 min of earthquake origin time.

PTWC issues its first tsunami threat message for any shallow (<100 km) undersea or nearshore earthquake in 
or near the vicinity of the Pacific basin with a magnitude greater than 𝐴𝐴 𝐴𝐴𝑤𝑤 7.0. If the magnitude is in the 7.1–7.5 
range, the message will indicate a possible tsunami threat to coasts located within 300 km of the epicenter. If 

https://www.isti.com/
http://www.earthwormcentral.org/
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the magnitude is in the 7.6–7.8 range, a message will indicate a possible tsunami threat to coasts located within 
1,000  km of the epicenter. And finally, if the magnitude is greater than 𝐴𝐴 𝐴𝐴𝑤𝑤 7.9, the message will indicate a 
possible tsunami threat to coasts located within a 3-hr tsunami travel time from the earthquake's epicenter. Differ-
ent warning criteria have been established for Hawaii (𝐴𝐴 𝐴𝐴𝑤𝑤  > 6.9), Guam, the Virgin Islands, and Puerto Rico 
(𝐴𝐴 𝐴𝐴𝑤𝑤  > 7.1). The criteria for Samoa depend on location and magnitude.

2. Materials and Methods
2.1. Data Analysis

We gathered collocated GNSS and accelerometer data recorded during nine earthquakes in the magnitude range 
𝐴𝐴 7.2 < 𝑀𝑀𝑤𝑤 < 9.1 that occurred in the Pacific basin offshore Mexico, Chile, Japan, Alaska, and Hawaii (Table 1). 

Strong-motion and GNSS data for Chile were obtained from the CSN (Báez et  al.,  2018; Barrientos,  2018). 
Data for Japan were obtained from the K-net and KiK-net seismic networks (Aoi et al., 2011) operated by the 
National Research Institute for Earth Science and Disaster Resilience (NIED), and the GEONET GNSS network 
(Sagiya, 2004; Sagiya et al., 2000). Seismic and GNSS data for Mexico were obtained from both TLALOC-
Net and the Servicio Sismológico Nacional (Cabral-Cano et al., 2018). Alaska and Hawaii accelerograms were 
obtained from the IRIS archive and GNSS data from continuous networks in North America (Murray et al., 2020).

For the purpose of demonstration, we post-processed GNSS phase and pseudorange data, epoch by epoch, to 
estimate displacements using precise point positioning (PPP) without ambiguity resolution (Ge et al., 2008; Geng 
et  al.,  2012), using the International GNSS Service final orbits and Bernese satellite clock estimates (http://
www.bernese.unibe.ch/). Similarly precise results can be obtained in real-time using in-receiver or server-based 
PPP processing. The system that we are testing with PTWC (Figure S1 in Supporting Information  S1) uses 
server-based PPP solutions streamed by UNAVCO's GAGE facility from more than 1,000 Network of the Amer-
icas stations (Dittmann et al., 2022; Hodgkinson et al., 2020; Mattioli et al., 2020). The GNSS and accelerometer 
data were then combined using a seismogeodetic Kalman filter with an acceleration multiplier of 10, as described 
by Bock et al. (2011) and Saunders et al. (2016), resulting in 100–200 Hz displacement and velocity waveforms 
(Figure 1).

For calculating earthquake magnitude before the onset of postseismic deformation, it is important to compute the 
coseismic time window on a station-by-station basis. We adopt the formulation of Golriz et al. (2021) using the 
seismogeodetic velocity (rather than GNSS displacements which are insensitive to P-wave arrivals) to determine 
the coseismic time window. We used an STA/LTA picker (R. Allen, 1982) to determine the first P-wave arrival 
as the start of the window, and estimate the end time by integrating the normalized velocity squared within a 5 s  
moving window in time until its 99% point reaches convergence. Movie S1 shows an example of marking the 
coseismic end time. This process is performed individually for each station, thereby estimating the progression 

Table 1 
Earthquakes Used in This Study

Name/Region 𝐴𝐴 𝐴𝐴𝑤𝑤 a Fault mechanism Origin time (UTC) b Longitude (E°) Latitude (N°) Depth (km)

Tokachi-Oki, Japan 8.3 Reverse 25 September 2003 19:50:07 144.079 41.780 42.0

Maule, Chile 8.8 Reverse 27 February 2010 06:34:11 −72.898 −36.122 22.9

Tohoku-Oki, Japan 9.1 Reverse 11 March 2011 05:46:24 142.861 38.104 23.7

Iquique, Chile 8.1 Reverse 01 April 2014 23:46:47 −70.769 −19.610 25.0

Illapel, Chile 8.3 Reverse 16 September 2015 22:54:32 −71.674 −31.573 22.4

Chiapas, Mexico 8.2 Normal 08 September 2017 04:49:19 −93.899 15.022 47.4

Kilauea, Hawaii 6.9 c Reverse 04 May 2018 22:32:54 −155.000 19.318 5.8

Simeonof, Alaska 7.8 Reverse 22 July 2020 06:12:44 −158.522 55.030 28.0

Chignic, Alaska 8.2 Reverse 29 July 2021 06:15:49 −157.888 55.364 35.0

 aMagnitudes are from the Global Centroid Moment Tensor (GCMT) catalog.  bEarthquake origin time and hypocenter location are from the National Research 
Institute for Earth Science and Disaster Resilience (NIED) for Japan, and from the United States Geological Survey (USGS) for Chile, Mexico, Hawaii, and Alaska 
earthquakes.  cComprehensive analysis by Bai et al. (2018) and Lay et al. (2018) resulted in a magnitude of 𝐴𝐴 𝐴𝐴𝑤𝑤 7.2 for this earthquake.

http://www.bernese.unibe.ch/
http://www.bernese.unibe.ch/
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of the rupture process through the network of sensors. The coseismic window length will vary with epicentral 
distance, and possibly due to path and site effects. Other source parameters, such as PGDs and static offsets can 
then be estimated from the displacement waveforms. In this study, we use the coseismic time window to integrate 
the vertical component of the seismogeodetic displacements (right panels of Movie S1).

2.2. Theory

Aki and Richards (2002) expressed the earthquake displacement field 𝐴𝐴 𝐴𝐴

(

⇀

𝑥𝑥, 𝑡𝑡

)

 generated by a double-couple point 
source in a homogeneous elastic medium as a sum of near (N), intermediate (IP and IS), and far (FP and FS) field 
P- and S-wave terms,
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where 𝐴𝐴 𝐴𝐴 is the distance between source and receiver, 𝐴𝐴 𝐴𝐴  is time, the 𝐴𝐴 𝐴𝐴
𝑖𝑖 terms represent the radiation patterns, and 𝐴𝐴 𝐴𝐴 , 𝐴𝐴 𝐴𝐴 , 

and 𝐴𝐴 𝐴𝐴 are the density, P-wave, and S-wave velocities, respectively. 𝐴𝐴 𝐴𝐴0(𝑡𝑡) is the time history of the seismic moment, 
and its derivative, 𝐴𝐴 �̇�𝑀0(𝑡𝑡) , is the moment rate. Left side of the equation (u, displacement) and the first term (of N) 
would be on the first line, the second and third terms (of IP and IS) would be on the second line, and the fourth and 
the fifth terms (of FP and FS) would be on the third line.All five terms are separated by the plus (+) sign.

Since the P-wave is most pronounced in the vertical direction, we follow Kikuchi and Ishida (1993) and Tsuboi 

et al. (1995) and use the vertical component of seismogeodetic displacement (as justified in Section 3), 𝐴𝐴 𝐴𝐴𝑧𝑧

(

⇀
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 , 
limited to the far-field P-wave term, as an approximate moment rate function
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Figure 1. Example of broadband seismogeodetic velocities and displacements recorded during the 2014 𝐴𝐴 𝐴𝐴𝑤𝑤 8.2 Iquique, Chile earthquake at a site located ∼104 km 
from the hypocenter. The Kalman filter input of strong-motion acceleration (station T08A, top) and high-rate (1 Hz) Global Navigation Satellite Systems (GNSS) 
displacement (station IQQE, bottom) are in black, while the output of unclipped broadband velocity (middle) and broadband displacement (bottom) are in red.
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where 𝐴𝐴 𝐴𝐴
FP represents the radiation pattern generated by a double-couple source.

We estimate the seismic moment by integrating 𝐴𝐴 𝐴𝐴

(

⇀

𝑥𝑥, 𝑡𝑡

)

 in Equation 2. Because the real Earth is heterogenous, 

𝐴𝐴 𝐴𝐴

(

⇀

𝑥𝑥, 𝑡𝑡

)

 contains path (attenuation and geometrical spreading) and receiver (free surface response at the station) 
effects. We apply approximations to account for these effects following Tsuboi et al. (1995), and assume values 
of 0.8 for anelastic attenuation, 1.2𝐴𝐴 𝐴𝐴  for geometrical spreading, and 1.5 for the free surface effect at the receiver.

We integrate 𝐴𝐴 𝐴𝐴𝑧𝑧

(

⇀

𝑥𝑥, 𝑡𝑡

)

 to obtain the moment history, 𝐴𝐴 𝐴𝐴0(𝑡𝑡) , at each station

𝑀𝑀0(𝑡𝑡) =
4𝜋𝜋𝜋𝜋𝜋𝜋

3
𝑟𝑟

𝐴𝐴FP ∫ 𝑢𝑢𝑧𝑧

(

⇀

𝑥𝑥, 𝑡𝑡

)

𝑑𝑑𝑡𝑡𝑑 (3)

By using seismogeodetic displacement, instead of seismic velocity, we avoid doubly integrating velocities to esti-
mate 𝐴𝐴 𝐴𝐴0(𝑡𝑡) , thereby reducing baseline errors (Melgar, Bock, et al., 2013). Assuming that the maximum absolute 
value of the moment function in Equation 3 recorded at each station is the actual seismic moment of the earth-
quake, 𝐴𝐴 𝐴𝐴0 , we follow Tsuboi et al. (1995) by estimating

𝑀𝑀0 ≅ 4𝜋𝜋𝜋𝜋𝜋𝜋
3
𝑟𝑟Max

|

|

|

|

∫ 𝑢𝑢𝑧𝑧

(

⇀

𝑥𝑥, 𝑡𝑡

)

𝑑𝑑𝑡𝑡
|

|

|

|

. (4)

Tsuboi et al.  (1995) showed that a combination of multiple records will give a good estimate of 𝐴𝐴 𝐴𝐴0 without 
correcting for 𝐴𝐴 𝐴𝐴

FP , assuming a reasonable azimuthal coverage. Therefore, in this study we do not correct for 
this term. For the other parameters in Equation 4, we choose representative values for the uppermost mantle of 

𝐴𝐴 𝐴𝐴 = 3400 kg∕m
3 and 𝐴𝐴 𝐴𝐴 = 7900m∕s (Tsuboi et al., 1995). As indicated earlier, we determine the coseismic time 

window for the integration in Equation 4 at each station individually using the seismogeodetic velocity (Golriz 
et al., 2021). We then compute the seismogeodetic moment magnitude at each station, following Kanamori (1977)

𝑀𝑀wg =
2

3

(

log
10
𝑀𝑀0 − 9.1

)

 (5)

which we refer to as 𝐴𝐴 𝐴𝐴wg to distinguish it from a magnitude estimate derived solely from seismic data.

Figure 2 shows an example of a vertical seismogeodetic displacement time series and the derived moment func-
tion for collocated seismic and GNSS stations recorded during the 2011 𝐴𝐴 𝐴𝐴𝑤𝑤 9.1 Tohoku-Oki, Japan earthquake. 
The final coseismic time window (top panel) is denoted by the vertical lines. The time of detected peaks in the 
moment function (bottom panel, gray and red circles) together with the end time of the coseismic window indi-
cate that we can derive/calculate a reliable magnitude estimate within ∼180 s (before the end of the rupture) and 
a more accurate final estimate within ∼300 s after origin time. Our estimates of the seismic moment are based 
directly on the maximum value of integrated displacement. Thus, regression against other source parameters 
such as PGD versus distance (Crowell et al., 2013), empirically based on the historical record, is not required. 
Movie  S1 provides another example of the process of estimating the coseismic window and seismogeodetic 
magnitude.

3. Results and Discussion

We use vertical displacement 𝐴𝐴 𝐴𝐴𝑧𝑧

(

⇀

𝑥𝑥, 𝑡𝑡

)

 from nine dip-slip earthquakes (eight thrust faulting and one normal fault-
ing) in the 7.2 < 𝐴𝐴 𝐴𝐴𝑤𝑤  < 9.1 range to estimate seismic moment and seismogeodetic moment magnitude, 𝐴𝐴 𝐴𝐴wg , 
for each earthquake. Once the P-wave is detected, we calculate the magnitude at 5-s intervals, for each station 
in parallel using Equations 4 and 5. The final magnitude for a given station is reported at the end time of its 
coseismic window. In Figure 3, we present the magnitude estimate evolution over time after rupture initiation 
for each earthquake, with individual station estimates shown as gray curves and the event medians (more robust 
than means) every 10-s shown as red scatter points with error bars estimated as ±1 interquartile-range (IQR) of 
all station estimates. The IQR is defined as the range of the middle 50% of the data, the difference between the 
75th and 25th percentiles. When a data sample is drawn from a normal distribution, its mean very nearly equals 
its median and its standard deviation equals about three quarters of the IQR.

The estimated 𝐴𝐴 𝐴𝐴wg magnitudes are within ±0.15 magnitude units of the GCMT 𝐴𝐴 𝐴𝐴𝑤𝑤 values (Dziewonski 
et  al.,  1981; Ekström et  al.,  2012) and within their IQR uncertainties for the seven shallow thrust events of 
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𝐴𝐴 𝐴𝐴𝑤𝑤   >  7.8. We estimate 𝐴𝐴 𝐴𝐴wg 8.52 compared to the GCMT of 𝐴𝐴 𝐴𝐴𝑤𝑤 8.2 for the 2017 Chiapas event. Note that 
this is the only event with a normal fault mechanism while all the others are thrust events. The closest station 
(∼70 km) recording during the 2020 𝐴𝐴 𝐴𝐴𝑤𝑤 7.8 Simeonof earthquake overestimates the magnitude with 𝐴𝐴 𝐴𝐴wg 8.51 
and is clearly an outlier. This station lies in close proximity to the trench and experienced ∼33 cm of coseismic 
uplift. Therefore, our far-field assumption (Equation 2) may not be valid in this case or the discrepancy may be 
due to directivity or site effects. Nevertheless, the event median of 𝐴𝐴 𝐴𝐴wg 7.84 matches the final published magni-
tude. Our estimate of 𝐴𝐴 𝐴𝐴wg 7.38 for the 2018 Kilauea, Hawaii earthquake is significantly larger than the GCMT 
value of 𝐴𝐴 𝐴𝐴𝑤𝑤 6.9. However, because of the inverse relationship between dip and seismic moment for shallow 
earthquakes, the magnitude of the 2018 Kilauea event is likely closer to 𝐴𝐴 𝐴𝐴𝑤𝑤 7.2 (Bai et al., 2018; Lay et al., 2018; 
Liu et  al.,  2018), in closer agreement with our results. In addition, the low rupture velocity (∼1 km/s), long 
rupture duration (∼40 s), and low moment-scaled radiated energy, imply frictional properties similar to those in 
the shallow portions of subduction zones where tsunami earthquakes occur (Liu et al., 2018). If that is the case 
here, our results (albeit from a sample of a single event) suggest that we can get an accurate magnitude estimate 
for tsunami earthquakes.

To justify our use of only the far field vertical P-wave component (FP) of the earthquake displacement field 

𝐴𝐴 𝐴𝐴

(

⇀

𝑥𝑥, 𝑡𝑡

)

 , we follow Madariaga et al. (2019) and express the near-field (first) term (N) of Equation 1 in a slightly 
different form,

𝐴𝐴
𝑁𝑁

4𝜋𝜋𝜋𝜋𝜋𝜋2𝑟𝑟2 ∫
1

𝜋𝜋∕𝛼𝛼

𝜏𝜏 𝜏𝜏0

(

𝜋𝜋𝛽𝛽

𝑟𝑟
− 𝜏𝜏

)

𝑑𝑑𝜏𝜏𝑑 (6)

and show that the near-field displacement term falls off as 𝐴𝐴 𝐴𝐴
−2 . Since the intermediate-field displacement 

terms also fall off as 𝐴𝐴 𝐴𝐴
−2 , the near- and intermediate-field (NF and IF) terms are not separable by studying their 

radi ation; they combine to produce a coseismic static offset which attenuates at 𝐴𝐴 𝐴𝐴
−2 compared to the 𝐴𝐴 𝐴𝐴

−1 decay 
of the (dynamic) far-field terms (Madariaga et al., 2019; Nikolaidis et al., 2001). By estimating the permanent 
coseismic displacement offset (NF + IF terms) and subtracting it from the vertical PGD (NF + IF + FF terms), 
we determine the displacement due to the (dynamic) far-field (FF) term only. For the largest earthquake in our 
data set (2011 𝐴𝐴 𝐴𝐴𝑤𝑤 9.1 Tohoku-Oki), the far-field terms dominate the vertical component of displacement beyond 

Figure 2. Example of vertical seismogeodetic displacement (top), and the derived moment function within the evolving 
coseismic window (bottom) for a collocated station during the 2011 𝐴𝐴 𝐴𝐴𝑤𝑤 9.1 Tohoku-Oki, Japan earthquake. The final 
coseismic time window is denoted by the vertical lines (top), and its derived final moment function in black (bottom) with 
the maximum value as a red point. The reported final seismogeodetic moment magnitude estimate for this station is based on 
Equations 4 and 5.
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𝐴𝐴 𝐴𝐴   ∼ 175 km epicentral distance (Figure 4) which, for this bilaterally rupturing event, corresponds to ∼½ of its 
rupture length of ∼350 km (Hayes, 2017; Ye et al., 2016). This result justifies the use of the far-field P-wave 
term of Equation 1. Also, for steeper incident rays at the receiving sites, the longitudinal (radial) energy, mostly 
P- with very little vertically polarized S-waves, would dominate on the vertical components (with very little, if 
any, horizontally polarized S-waves). This justifies using the P-wave term recorded by the vertical component.

Because we integrate the vertical component of displacement over the entire coseismic window, we are able to 
measure the largest moment release even if it occurs after an earlier but smaller peak. This provides accurate 𝐴𝐴 𝐴𝐴wg 
estimates for complex earthquakes as well as for tsunami earthquakes where peak moment release may occur late 
enough in the rupture process to indicate a long rupture duration. Therefore, the time of the maximum peak as 
well as its amplitude should allow identification of tsunami earthquakes.

We compare our 𝐴𝐴 𝐴𝐴wg approach with two additional magnitude determination methods that rely on high-rate 
GNSS displacements; the empirical PGD scaling law (𝐴𝐴 𝐴𝐴pgd ), and W-phase inversion from regional GNSS 
(𝐴𝐴 𝐴𝐴ww ). For the 𝐴𝐴 𝐴𝐴pgd calculation and regression, we use all available GNSS stations (instead of collocated only) 
and follow the procedure described at Ruhl et al. (2019). We set a minimum PGD value of 3 cm, a maximum 
hypocentral distance of 1,000 km, and signal-to-noise ratio of 3 and above for a station to be included in the 
regression. The PGD versus hypocentral distance regressions are shown in Figure S1 in Supporting Informa-
tion S1. The GNSS-derived W-phase results of 𝐴𝐴 𝐴𝐴ww are taken from Riquelme et al. (2016) and only available for 
the 2010 𝐴𝐴 𝐴𝐴𝑤𝑤 8.8 Maule, 2011 𝐴𝐴 𝐴𝐴𝑤𝑤 9.1 Tohoku, 2014 𝐴𝐴 𝐴𝐴𝑤𝑤 8.1 Iquique, and 2015 𝐴𝐴 𝐴𝐴𝑤𝑤 8.3 Illapel earthquakes. We 
compare final results of the three methods in Table 2, and a timeline for the first 5 min after earthquake origin 
time in Figure S3 in Supporting Information S1. The uncertainty for 𝐴𝐴 𝐴𝐴wg is defined as ±1 IQR, similar to error 
bars on Figure 3, while the uncertainty for 𝐴𝐴 𝐴𝐴pgd is defined as the root mean square error of the linear regression. 

Figure 3. Time evolution of our magnitude estimates for nine earthquakes used in this study. Gray curves denote individual stations, red points are event medians 
with ±1 interquartile-range. Moment rate functions from the United States Geological Survey are in light blue. The Global Centroid Moment Tensor magnitudes are 
denoted by black dashed horizontal lines. For the 2018 Kilauea event, we also include a black dotted line indicating the 𝐴𝐴 𝐴𝐴𝑤𝑤 7.2 estimate of Bai et al. (2018) and Lay 
et al. (2018).
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No 𝐴𝐴 𝐴𝐴ww uncertainty was reported at Riquelme et al. (2016). Six of the nine 
events are earthquakes used by Ruhl et al. (2019) in their PGD regressions. 
The 𝐴𝐴 𝐴𝐴pgd magnitudes for two of the “new” earthquakes (i.e., not included in 
the published analysis), 2020 𝐴𝐴 𝐴𝐴𝑤𝑤 7.8 Simeonof and 2021 𝐴𝐴 𝐴𝐴𝑤𝑤 8.2 Chignic, 
are underestimated compared to the GCMT and 𝐴𝐴 𝐴𝐴wg magnitudes, which 
match within the uncertainties of 𝐴𝐴 𝐴𝐴wg . For the 2018 Kilauea earthquake, 

𝐴𝐴 𝐴𝐴pgd (6.67 ± 0.15) is closer to 𝐴𝐴 𝐴𝐴𝑤𝑤 6.9 while 𝐴𝐴 𝐴𝐴wg (7.38 ± 0.25) is signifi-
cantly overestimated. However, as indicated earlier, our results are consistent 
with the analysis by Bai et al. (2018) and Lay et al. (2018) who estimate a 
magnitude of 𝐴𝐴 𝐴𝐴𝑤𝑤 7.2 for the 2018 Kilauea event. Furthermore, using the Ruhl 
et al. (2019) regression coefficients results in a significant underestimate of 
the 2014 𝐴𝐴 𝐴𝐴𝑤𝑤 8.1 Iquique and 2015 𝐴𝐴 𝐴𝐴𝑤𝑤 8.3 Illapel earthquake magnitudes 
(Table  2). The 𝐴𝐴 𝐴𝐴wg estimates are more accurate than 𝐴𝐴 𝐴𝐴pgd except for the 
single normal event in our data set, the 2017 Chiapas earthquake, where 𝐴𝐴 𝐴𝐴wg 
is a significant overestimate. Therefore, even though PGD-based magnitude 
estimates are timelier (Figure S3 in Supporting Information S1) and despite 
our study being limited to nine earthquakes, our theory-based seismogeodetic 

𝐴𝐴 𝐴𝐴wg results are accurate and valuable estimates of 𝐴𝐴 𝐴𝐴𝑤𝑤 . Although beyond the 
scope of this study, we speculate that the empirically based PGD method 
insufficiently accounts for the full range of source, site and/or path effects. 
GNSS-derived W-phase final (within 4–5 min) results of 𝐴𝐴 𝐴𝐴ww are compa-
rable to our 𝐴𝐴 𝐴𝐴wg estimates for the four earthquakes reported by Riquelme 
et al. (2016). W-phase inversion is stable within 4–5 min after rupture initi-
ation for most cases. Using the 𝐴𝐴 𝐴𝐴wg approach, initial estimates of 𝐴𝐴 𝐴𝐴𝑤𝑤 7+ 
are available within 1 min and could be beneficial for early tsunami threat 
messages. It is important to note that 𝐴𝐴 𝐴𝐴ww inversion includes earthquake 
focal mechanism, which is a key component for the assessment of tsunami-
genic potential.

We neglected the radiation pattern term 𝐴𝐴 𝐴𝐴
FP term in Equation  1 based on 

Tsuboi et al. (1995), who showed that a combination of multiple records will 
give a good estimate of 𝐴𝐴 𝐴𝐴𝑤𝑤 , assuming a reasonable azimuthal coverage. We 
assumed a value of 1 for the 𝐴𝐴 𝐴𝐴

FP term in Equations 2 and 3. Assuming an 
extreme case of 𝐴𝐴 𝐴𝐴

FP  = 0.1, this term will lead to a 𝐴𝐴 2∕3 (0.67) of a magnitude unit difference in our 𝐴𝐴 𝐴𝐴wg estimate 
for a particular station resulting in an increased magnitude. However, we do not expect this term to vary signifi-
cantly from 1 within on-shore stations during a thrust faulting event. In fact, Tsuboi et al. (1995) showed that the 

Figure 4. Distinguishing the contribution of far-field vertical displacements 
in Equation 1 for the 2011 𝐴𝐴 𝐴𝐴𝑤𝑤 9.1 Tohoku-Oki earthquake. Top: records 
of estimated 𝐴𝐴 𝐴𝐴wg per station as a function of epicentral distance. Bottom: 
absolute value of permanent vertical coseismic offsets (near- and 
intermediate-field terms) as red points, and the difference between vertical 
peak displacements and static offsets (far-field term) as blue points, as a 
function of epicentral distance. Note that the FF P-waves dominate the vertical 
component of displacement beyond ∼175 km epicentral distance.

Table 2 
Comparison Between Global Navigation Satellite Systems-Based 𝐴𝐴 𝐴𝐴𝑤𝑤 Estimates

Name/Region 𝐴𝐴 𝐴𝐴𝑤𝑤 

𝐴𝐴 𝐴𝐴wg 𝐴𝐴 𝐴𝐴pgd 𝐴𝐴 𝐴𝐴ww 

Estimate #Stations Estimate #Stations Estimate #Stations

Tokachi-Oki, Japan 8.3 8.36 ± 0.17 58 7.96 ± 0.20 307 – –

Maule, Chile 8.8 8.95 ± 0.12 3 8.92 ± 0.09 19 8.90 12

Tohoku-Oki, Japan 9.1 9.03 ± 0.11 97 9.14 ± 0.15 916 9.00 375

Iquique, Chile 8.1 8.23 ± 0.17 15 7.59 ± 0.20 21 8.10 9

Illapel, Chile 8.3 8.42 ± 0.25 9 7.68 ± 0.30 35 8.40 15

Chiapas, Mexico 8.2 8.52 ± 0.08 13 8.24 ± 0.21 27 – –

Kilauea, Hawaii 6.9 a 7.38 ± 0.25 4 6.68 ± 0.15 15 – –

Simeonof, Alaska 7.8 7.84 ± 0.37 5 7.47 ± 0.12 18 – –

Chignic, Alaska 8.2 8.30 ± 0.24 6 7.70 ± 0.21 43 – –

Note. 𝐴𝐴 𝐴𝐴wg (This Study), 𝐴𝐴 𝐴𝐴pgd (Following Ruhl et al., 2019), and 𝐴𝐴 𝐴𝐴ww (Taken From Riquelme et al., 2016).
 aComprehensive analysis by Bai et al. (2018) and Lay et al. (2018) resulted in a magnitude of 𝐴𝐴 𝐴𝐴𝑤𝑤 7.2 for this earthquake.
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averaged radiation pattern over the entire focal sphere is 𝐴𝐴 𝐴𝐴FP ≅
√

4∕15 , which is, based on Equations 3 and 5, 
equivalent to 0.2 magnitude units. Due to the nature of subduction zones and the land-based GNSS and seismic 
instrumentation, most earthquakes in our data set are associated with azimuthal gaps larger than 180° (Goldberg 
& Bock, 2017). This is particularly of concern for the Kilauea, Iquique, and Chiapas earthquakes. Therefore, we 
explored the effect of the spatial distribution of the stations on the estimated magnitude (Figure 5). We find that 

Figure 5. Spatial distribution of station by station 𝐴𝐴 𝐴𝐴wg estimates for all earthquakes included in our study. Green colors indicate overestimates, while red colors 
indicate underestimates.
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𝐴𝐴 𝐴𝐴wg provides precise and accurate magnitude estimates for tsunamigenic earthquakes even with poor azimuthal 
or sparse station coverage (e.g., the three stations for the 2010 𝐴𝐴 𝐴𝐴𝑤𝑤 8.8 Maule earthquake).

Improvements may still be obtained by considering the radiation patterns in Equation 1. However, one must 
assume, a priori, a focal mechanism in order to calculate them. The focal mechanisms from P-wave polarities can 
be estimated in real-time. However, these give only the focal mechanism for the initial rupture at the epicenter 
and can often be significantly different from the final focal mechanism. For real-time purposes, one can assume 
that rupture occurs down-dip of the trench and use a generalized thrust focal mechanism as an input for radiation 
pattern term calculations. We are also exploring the introduction of a regional velocity model and a rapid finite 
fault slip inversion from the seismogeodetic or GNSS-only displacements to take into account the radiation 
pattern.

We continue to test 𝐴𝐴 𝐴𝐴wg estimation with a seismogeodetic approach extended for interleaved high-rate GNSS 
and seismic instruments that may only have a subset of collocated stations. This scenario requires spatial inter-
polation of the coseismic time window from regional seismic stations to the GNSS stations, as demonstrated by 
Golriz et al. (2021). Since most local tsunamis are caused by thrust events, we have not considered strike-slip 
fault mechanisms in this study although this is certainly of interest for rapid magnitude estimation for earth-
quake early warning systems such as ShakeAlert (Given et al., 2014; Kohler et al., 2020) in the U.S. West Coast, 
which includes major strike-slip fault regimes. For that purpose, one should account for the other (S-wave) terms 
in Equation  1 and use the horizontal seismogeodetic components to obtain a reliable estimate for strike-slip 
earthquakes.

4. Conclusions
We present a seismogeodetic approach to rapid magnitude estimation based on the method developed for 
broadband seismic data by Tsuboi et  al.  (1995) and using the far-field P-wave term in the representation of 
the displacement field as a point source in a spherically homogeneous medium (Aki & Richards, 2002). Our 
approach is earthquake specific in contrast to empirical methods that rely on historical earthquake records. By 
combining high-rate GNSS displacements with strong-motion accelerations at collocated stations, we estimate 
broadband seismogeodetic displacement and velocity waveforms and circumvent limitations associated with 
double-integration of regional-to-teleseismic broadband velocity, triple-integration of accelerations, and less 
precise (and lower rate) GNSS data only. We demonstrate the 𝐴𝐴 𝐴𝐴wg approach using nine tsunamigenic earthquakes 
in the Pacific basin with 7.2 < 𝐴𝐴 𝐴𝐴𝑤𝑤  < 9.1. We are able to estimate station-by-station moment magnitude using the 
vertical component of displacement with a precision of 0.18 magnitude units for eight thrust faulting events and 
0.32 magnitude units for a single normal faulting event, within 2–3 min of onset time for the set of earthquakes 
in this study. In general, the latency will vary with different source time functions. These results indicate that 
our approach is particularly well suited to local tsunami warning systems where response time is essential and to 
rapid analysis of tsunami earthquakes with complex fault mechanisms. Therefore, we advocate for a large-scale 
seismogeodetic network expansion to mitigate the risks to vulnerable populations and infrastructure.
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ical seismogeodetic and high-rate GNSS displacements can be found at http://sopac-csrc.ucsd.edu/index.php/
highrategnss/. The Hawaii island 50 m resolution bathymetry data set is available for download from: http://

http://garner.ucsd.edu/pub/measuresESESES_products/ATBD/ESESES-ATBD.pdf
http://garner.ucsd.edu/pub/measuresESESES_products/ATBD/ESESES-ATBD.pdf
http://garner.ucsd.edu/pub/measuresESESES_products/EarthquakeDisplacements/
https://cddis.nasa.gov/archive/GPS_Explorer/archive/earthquake_displacements/
https://cddis.nasa.gov/archive/GPS_Explorer/archive/earthquake_displacements/
http://sopac-csrc.ucsd.edu/index.php/highrategnss/
http://sopac-csrc.ucsd.edu/index.php/highrategnss/
http://www.soest.hawaii.edu/hmrg/multibeam/bathymetry.php
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www.soest.hawaii.edu/hmrg/multibeam/bathymetry.php. Topography and bathymetry data for the other regions 
are from Tozer et al. (2019).
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Erratum
In the originally published version of this article, equation 1 contained a typographical error. The error involved 
the omission of an alpha in the denominator of the last term (under AFS). The error has been corrected, and this 
may be considered the authoritative version of the record.
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